woolrich sale
isabel marant online
woolrich Outlet
woolrich parka
isabel marant sneakers
hollister online
hollister sale uk
Biomatic Political Systems - Biomatics.org

Biomatic Political Systems

From Biomatics.org

Jump to: navigation, search


Social software applications, also known as social apps, include communication tools and interactive tools often based on the Internet. Communication tools typically handle the capturing, storing and presentation of communication, usually written but increasingly including audio and video as well. Interactive tools handle mediated interactions between a pair or group of users. They focus on establishing and maintaining a connection among users, facilitating the mechanics of conversation and talk.[1]


Networks play a crucial role in computational biology, yet their analysis and representation is still an open problem. Power Graph Analysis is a lossless transformation of biological networks into a compact, less redundant representation, exploiting the abundance of cliques and bicliques as elementary topological motifs. We demonstrate with five examples the advantages of Power Graph Analysis. Investigating protein-protein interaction networks, we show how the catalytic subunits of the casein kinase II complex are distinguishable from the regulatory subunits, how interaction profiles and sequence phylogeny of SH3 domains correlate, and how false positive interactions among high-throughput interactions are spotted. Additionally, we demonstrate the generality of Power Graph Analysis by applying it to two other types of networks. We show how power graphs induce a clustering of both transcription factors and target genes in bipartite transcription networks, and how the erosion of a phosphatase domain in type 22 non-receptor tyrosine phosphatases is detected. We apply Power Graph Analysis to high-throughput protein interaction networks and show that up to 85% (56% on average) of the information is redundant. Experimental networks are more compressible than rewired ones of same degree distribution, indicating that experimental networks are rich in cliques and bicliques. Power Graphs are a novel representation of networks, which reduces network complexity by explicitly representing re-occurring network motifs. Power Graphs compress up to 85% of the edges in protein interaction networks and are applicable to all types of networks such as protein interactions, regulatory networks, or homology networks.


Figure 1. The Three Basic Motifs: Star, Biclique, and Clique.

Stars often occur because of hub proteins or when affinity purification complexes are interpreted using the spoke model. Bicliques often arise because of domain-domain or domain-motif interactions inducing protein interactions [25]. Power nodes are sets of nodes and power edges connect power nodes. A power edge between two power nodes signifies that all nodes of the first set are connected to all nodes of the second set. Note that nodes within a power node are not necessarily connected to each other.




Personal tools
Google AdSense